Weak semi-continuity of the duality product in Sobolev spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak semi-continuity of the duality product in Sobolev spaces

Given a weakly convergent sequence of positive functions in W 1,p 0 (Ω), we prove the equivalence between its convergence in the sense of obstacles and the lower semicontinuity of the term by term duality product associated to (the p-Laplacian of) weakly convergent sequences of p-superharmonic functions of W 1,p 0 (Ω). This result implicitly gives new characterizations for both the convergence ...

متن کامل

$C^{*}$-semi-inner product spaces

In this paper, we introduce a generalization of Hilbert $C^*$-modules which are pre-Finsler modules, namely, $C^{*}$-semi-inner product spaces. Some properties and results of such spaces are investigated, specially the orthogonality in these spaces will be considered. We then study bounded linear operators on $C^{*}$-semi-inner product spaces.

متن کامل

Weak hyper semi-quantales and weak hypervalued topological spaces

The purpose of this paper is to construct a weak hyper semi-quantale as a generalization of the concept of semi-quantale and used it as an appropriate hyperlattice-theoretic basis to formulate new lattice-valued topological theories. Based on such weak hyper semi-quantale, we aim to construct the notion of a weak hypervalued-topology as a generalized form of the so-called lattice-valued t...

متن کامل

Duality in Refined Watanabe-sobolev Spaces and Weak Approximations of Spde

In this paper we introduce a new family of refined WatanabeSobolev spaces that capture in a fine way integrability in time of the Malliavin derivative. We consider duality in these spaces and derive a Burkholder type inequality in a dual norm. The theory we develop allows us to prove weak convergence with essentially optimal rate for numerical approximations in space and time of semilinear para...

متن کامل

Duality in Refined Sobolev-malliavin Spaces and Weak Approximation of Spde

Abstract. We introduce a new family of refined Sobolev-Malliavin spaces that capture the integrability in time of the Malliavin derivative. We consider duality in these spaces and derive a Burkholder type inequality in a dual norm. The theory we develop allows us to prove weak convergence with essentially optimal rate for numerical approximations in space and time of semilinear parabolic stocha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2006

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2006.03.014